Optofluidic Resonance of a Transparent Liquid Jet Excited by a Continuous Wave Laser

PHYSICAL REVIEW LETTERS(2021)

引用 8|浏览4
暂无评分
摘要
We report a new optofluidic resonating phenomenon that naturally links the optical radiation pressure, total internal reflection, capillary wave, and Rayleigh-Plateau instability together. When a transparent liquid jet is radiated by a focused continuous wave laser beam, the highly ordered periodic jet breakup is unexpectedly triggered and maintained. The capillary wave enables the liquid-gas interface to serve as a rotating mirror reflecting the laser beam in a wide range of angles, including the critical angle for total internal reflection. The liquid jet acts as an optical waveguide to periodically transmit the laser beam to the upstream of the jet. The periodic optical beam transmittance inside the liquid jet exerts time-dependent optical pressure to the jet that triggers the Rayleigh-Plateau instability. The jet breakup process locks in at the frequency corresponding to the peak growth rate of the Rayleigh-Plateau instability of the liquid jet, which agrees with the prediction from the dispersion relation of a traveling liquid jet.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要