Genome-Wide Association Analysis of Resistance to Pseudoperonospora cubensis in Citron Watermelon

PLANT DISEASE(2022)

引用 5|浏览8
暂无评分
摘要
Cultivated sweet watermelon (Citrullus lanatus) is an important vegetable crop for millions of people around the world. There are limited sources of resistance to economically important diseases within C. lanatus, whereas C. amarus has a reservoir of traits that can be exploited to improve C. lanatus for resistance to biotic and abiotic stresses. Cucurbit downy mildew (CDM), caused by Pseudoperonospora cubensis, is an emerging threat to watermelon production. We screened 122 C. amarus accessions for resistance to CDM over two tests (environments). The accessions were genotyped by whole-genome resequencing to generate 2,126,759 single nucleotide polymorphic (SNP) markers. A genome-wide association study was deployed to uncover marker-trait associations and identify candidate genes underlying resistance to CDM. Our results indicate the presence of wide phenotypic variability (1.1 to 57.8%) for leaf area infection, representing a 50.7-fold variation for CDM resistance across the C. amarus germplasm collection. Broad-sense heritability estimate was 0.55, implying the presence of moderate genetic effects for resistance to CDM. The peak SNP markers associated with resistance to P. cubensis were located on chromosomes Ca03, Ca05, Ca07, and Ca11. The significant SNP markers accounted for up to 30% of the phenotypic variation and were associated with promising candidate genes encoding leucine-rich repeat receptor-like protein kinase and the WRKY transcription factor. This information will be useful in understanding the genetic architecture of the P. cubensis-Citrullus spp. patho-system as well as development of resources for genomics-assisted breeding for resistance to CDM in watermelon.
更多
查看译文
关键词
downy mildew, GWAS, host resistance, watermelon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要