Statistical Verification of Autonomous Systems using Surrogate Models and Conformal Inference

semanticscholar(2020)

引用 1|浏览4
暂无评分
摘要
In this paper, we propose conformal inference based approach for statistical verification of CPS models. Cyber-physical systems (CPS) such as autonomous vehicles, avionic systems, and medical devices operate in highly uncertain environments. This uncertainty is typically modeled using a finite number of parameters or input signals. Given a system specification in Signal Temporal Logic (STL), we would like to verify that for all (infinite) values of the model parameters/input signals, the system satisfies its specification. Unfortunately, this problem is undecidable in general. Statistical model checking (SMC) offers a solution by providing guarantees on the correctness of CPS models by statistically reasoning on model simulations. We propose a new approach for statistical verification of CPS models for user-provided distribution on the model parameters. Our technique uses model simulations to learn surrogate models, and uses conformal inference to provide probabilistic guarantees on the satisfaction of a given STL property. Additionally, we can provide prediction intervals containing the the quantitative satisfaction values of the given STL property for any user-specified confidence level. We also propose a refinement procedure based on Gaussian Process (GP)-based surrogate models for obtaining fine-grained probabilistic guarantees over sub-regions in the parameter space. This in turn enables the CPS designer to choose assured validity domains in the parameter space for safety-critical applications. Finally, we demonstrate the efficacy of our technique on several CPS models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要