Nanocatalyst doped bacterial cellulose-based thermosensitive nanogel with biocatalytic function for antibacterial application

International Journal of Biological Macromolecules(2022)

引用 11|浏览6
暂无评分
摘要
Reactive oxygen species (ROS) for treating bacterial infection is an alternative strategy to overcome the drawbacks such as bacterial resistance of commonly used antibiotics. Nanocatalysts have been proved highly effective in regulating intracellular ROS level due to their intrinsic enzymes-mimicking ability. Herein, we prepared a carbon-based nanozyme doped with copper atoms with peroxidase mimetic activity to catalyze the decomposition of bio-safety dosage of H2O2 to highly reactive OH radicals for antibacterial treatment. Furthermore, we designed the thermo-responsive nanogels consisting of bacterial cellulose nanowhiskers as the carrier of the nanozyme. The obtained nanogels displayed remarkable intelligent response to temperature change with sol-gel transition temperature of ~33 °C and in situ gel forming ability. Moreover, the nanogels exhibited excellent biocompatibility in vitro, along with remarkable antibacterial efficacy which could inactivate 6.36 log of S. aureus and 6.01 log of E. coli in 3 h, respectively. The findings provide a novel strategy for advancing the development of nanocatalysts-based responsive biomaterials for treating bacterial infections.
更多
查看译文
关键词
Nanocatalysts,Reactive oxygen species,Bacterial cellulose,Injectability,Antibacterial
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要