Masked Feature Prediction for Self-Supervised Visual Pre-Training

IEEE Conference on Computer Vision and Pattern Recognition(2022)

引用 530|浏览470
暂无评分
摘要
We present Masked Feature Prediction (MaskFeat) for self-supervised pre-training of video models. Our approach first randomly masks out a portion of the input sequence and then predicts the feature of the masked regions. We study five different types of features and find Histograms of Oriented Gradients (HOG), a hand-crafted feature descriptor, works particularly well in terms of both performance and efficiency. We observe that the local contrast normalization in HOG is essential for good results, which is in line with earlier work using HOG for visual recognition. Our approach can learn abundant visual knowledge and drive large-scale Transformer based models. Without using extra model weights or supervision, MaskFeat pretrained on unlabeled videos achieves unprecedented results of 86.7% with MViTv2-L on Kinetics-400, 88.3% on Kinetics 600, 80.4% on Kinetics-700, 38.8 mAP on AVA, and 75.0% on SSv2. MaskFeat further generalizes to image input, which can be interpreted as a video with a single frame and obtains competitive results on ImageN et.
更多
查看译文
关键词
Self-& semi-& meta- Recognition: detection,categorization,retrieval, Video analysis and understanding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要