Controlled delivery of quantum dots using microelectrophoresis technique: Intracellular behavior and preservation of cell viability.

Bioelectrochemistry (Amsterdam, Netherlands)(2021)

引用 0|浏览11
暂无评分
摘要
The use of synthetic nanomaterials as contrast agents, sensors, and drug delivery vehicles in biological research primarily requires effective approaches for intracellular delivery. Recently, the well-accepted microelectrophoresis technique has been reported to exhibit the ability to deliver nanomaterials, quantum dots (QDs) as an example, into live cells, but information about cell viability and intracellular fate of delivered nanomaterials is yet to be provided. Here we show that cell viability following microelectrophoresis of QDs is strongly correlated with the amount of delivered QDs, which can be finely controlled by tuning the ejection duration to maintain long-term cell survival. We reveal that microelectrophoretic delivered QDs distribute homogeneously and present pure Brownian diffusion inside the cytoplasm without endosomal entrapment, having great potential for the study of dynamic intracellular events. We validate that microelectrophoresis is a powerful technique for the effective intracellular delivery of QDs and potentially various functional nanomaterials in biological research.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要