The T cell receptor repertoire reflects the dynamics of the immune response to vaccination

biorxiv(2021)

引用 1|浏览7
暂无评分
摘要
Early, high-resolution metrics are needed to ascertain the immune response to vaccinations. The T cell receptor (TCR), a heterodimer of one α and one β chain, is a promising target, with the complete TCR repertoire reflecting the T cells present in an individual. To this end, we developed Tseek, an unbiased and accurate method for profiling the TCR repertoire by sequencing the TCR α and β chains and developing a suite of tools for repertoire analysis. An added advantage is the ability to non-invasively analyze T cells in peripheral blood mononuclear cells (PBMCs). Tseek and the analytical suite were used to explore the T cell response to both the COVID-19 mRNA vaccine (n=9) and the seasonal inactivated Influenza vaccine (n=5) at several time points. Neutralizing antibody titers were also measured in the covid vaccine samples. The COVID-19 vaccine elicited a broad T cell response involving multiple expanded clones, whereas the Influenza vaccine elicited a narrower response involving fewer clones. Many distinct T cell clones responded at each time point, over a month, providing temporal details lacking in the antibody measurements, especially before the antibodies are detectable. In individuals recovered from a SARS-CoV-2 infection, the first vaccine dose elicited a robust T cell response, while the second dose elicited a comparatively weaker response, indicating a saturation of the response. The physical symptoms experienced by the recipients immediately following the vaccinations were not indicative of the TCR/antibody responses, while a weak TCR response seemed to presage a weak antibody response. We also found that the TCR repertoire acts as an individual fingerprint: donors of blood samples taken years apart could be identified solely based upon their TCR repertoire, hinting at other surprising uses the TCR repertoire may have. These results demonstrate the promise of TCR repertoire sequencing as an early and sensitive measure of the adaptive immune response to vaccination, which can help improve immunogen selection and optimize vaccine dosage and spacing between doses. ### Competing Interest Statement AJ and RS are inventors on the Tseek patent (USPTO 10,920,220) and are co-founders of Girihlet Inc. which has licensed the Tseek patent from Icahn school of medicine at Mount Sinai.
更多
查看译文
关键词
immune response,vaccination,receptor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要