Scale and Landscape Features Matter for Understanding Waterbird Habitat Selection

REMOTE SENSING(2021)

引用 7|浏览0
暂无评分
摘要
Clarifying species-environment relationships is crucial for the development of efficient conservation and restoration strategies. However, this work is often complicated by a lack of detailed information on species distribution and habitat features and tends to ignore the impact of scale and landscape features. Here, we tracked 11 Oriental White Storks (Ciconia boyciana) with GPS loggers during their wintering period at Poyang Lake and divided the tracking data into two parts (foraging and roosting states) according to the distribution of activity over the course of a day. Then, a three-step multiscale and multistate approach was employed to model habitat selection characteristics: (1) first, we minimized the search range of the scale for these two states based on daily movement characteristics; (2) second, we identified the optimized scale of each candidate variable; and (3) third, we fit a multiscale, multivariable habitat selection model in relation to natural features, human disturbance and especially landscape composition and configuration. Our findings reveal that habitat selection of the storks varied with spatial scale and that these scaling relationships were not consistent across different habitat requirements (foraging or roosting) and environmental features. Landscape configuration was a more powerful predictor for storks' foraging habitat selection, while roosting was more sensitive to landscape composition. Incorporating high-precision spatiotemporal satellite tracking data and landscape features derived from satellite images from the same periods into a multiscale habitat selection model can greatly improve the understanding of species-environmental relationships and guide efficient recovery planning and legislation.

更多
查看译文
关键词
species distribution models, satellite tracking, multiscale model, landscape composition and configuration, variance partitioning analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要