Evaluation of circulating microRNAs as non-invasive biomarkers in the diagnosis of ovarian cancer: a case–control study

Archives of Gynecology and Obstetrics(2021)

引用 7|浏览6
暂无评分
摘要
Purpose Ovarian cancer is the seventh most frequent form of malignant diseases in women worldwide and over 150,000 women die from it every year. More than 70 percent of all ovarian cancer patients are diagnosed at a late-stage disease with poor prognosis necessitating the development of sufficient screening biomarkers. MicroRNAs displayed promising potential as early diagnostics in various malignant diseases including ovarian cancer. The presented study aimed at identifying single microRNAs and microRNA combinations detecting ovarian cancer in vitro and in vivo. Methods Intracellular, extracellular and urinary microRNA expression levels of twelve microRNAs (let-7a, let-7d, miR-10a, miR-15a, miR-15b, miR-19b, miR-20a, miR-21, miR-100, miR-125b, miR-155, miR-222) were quantified performing quantitative real-time-PCR. Therefore, the three ovarian cancer cell lines SK-OV-3, OAW-42, EFO-27 as well as urine samples of ovarian cancer patients and healthy controls were analyzed. Results MiR-15a, miR-20a and miR-222 showed expression level alterations extracellularly, whereas miR-125b did intracellularly across the analyzed cell lines. MicroRNA expression alterations in single cell lines suggest subtype specificity in both compartments. Hypoxia and acidosis showed scarce effects on single miRNA expression levels only. Furthermore, we were able to demonstrate the feasibility to clearly detect the 12 miRNAs in urine samples. In urine, miR-15a was upregulated whereas let-7a was down-regulated in ovarian cancer patients. Conclusion Intracellular, extracellular and urinary microRNA expression alterations emphasize their great potential as biomarkers in liquid biopsies. Especially, miR-15a and let-7a qualify for possible circulating biomarkers in liquid biopsies of ovarian cancer patients.
更多
查看译文
关键词
microRNAs, Ovarian cancer, Liquid biopsies, Urine, Disease biomarker, Urinary microRNAs, Hypoxia, Acidosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要