Federated Reinforcement Learning Based AANs with LEO Satellites and UAVs

SENSORS(2021)

引用 5|浏览1
暂无评分
摘要
Supported by the advances in rocket technology, companies like SpaceX and Amazon competitively have entered the satellite Internet business. These companies said that they could provide Internet service sufficiently to users using their communication resources. However, the Internet service might not be provided in densely populated areas, as the satellites coverage is broad but its resource capacity is limited. To offload the traffic of the densely populated area, we present an adaptable aerial access network (AAN), composed of low-Earth orbit (LEO) satellites and federated reinforcement learning (FRL)-enabled unmanned aerial vehicles (UAVs). Using the proposed system, UAVs could operate with relatively low computation resources than centralized coverage management systems. Furthermore, by utilizing FRL, the system could continuously learn from various environments and perform better with the longer operation times. Based on our proposed design, we implemented FRL, constructed the UAV-aided AAN simulator, and evaluated the proposed system. Base on the evaluation result, we validated that the FRL enabled UAV-aided AAN could operate efficiently in densely populated areas where the satellites cannot provide sufficient Internet services, which improves network performances. In the evaluations, our proposed AAN system provided about 3.25 times more communication resources and had 5.1% lower latency than the satellite-only AAN.
更多
查看译文
关键词
aerial access network, federated reinforcement learning, low-Earth orbit satellites, pseudo-satellites, non-terrestrial network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要