Controlled generation of self-sustained oscillations in complex artificial neural networks

CHAOS(2021)

引用 0|浏览17
暂无评分
摘要
Spatially distinct, self-sustained oscillations in artificial neural networks are fundamental to information encoding, storage, and processing in these systems. Here, we develop a method to induce a large variety of self-sustained oscillatory patterns in artificial neural networks and a controlling strategy to switch between different patterns. The basic principle is that, given a complex network, one can find a set of nodes-the minimum feedback vertex set (mFVS), whose removal or inhibition will result in a tree-like network without any loop structure. Reintroducing a few or even a single mFVS node into the tree-like artificial neural network can recover one or a few of the loops and lead to self-sustained oscillation patterns based on these loops. Reactivating various mFVS nodes or their combinations can then generate a large number of distinct neuronal firing patterns with a broad distribution of the oscillation period. When the system is near a critical state, chaos can arise, providing a natural platform for pattern switching with remarkable flexibility. With mFVS guided control, complex networks of artificial neurons can thus be exploited as potential prototypes for local, analog type of processing paradigms.

更多
查看译文
关键词
oscillations,networks,artificial,self-sustained
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要