Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex

Molecular Cell(2022)

引用 32|浏览8
暂无评分
摘要
Mutations in PINK1 cause autosomal-recessive Parkinson’s disease. Mitochondrial damage results in PINK1 import arrest on the translocase of the outer mitochondrial membrane (TOM) complex, resulting in the activation of its ubiquitin kinase activity by autophosphorylation and initiation of Parkin-dependent mitochondrial clearance. Herein, we report crystal structures of the entire cytosolic domain of insect PINK1. Our structures reveal a dimeric autophosphorylation complex targeting phosphorylation at the invariant Ser205 (human Ser228). The dimer interface requires insert 2, which is unique to PINK1. The structures also reveal how an N-terminal helix binds to the C-terminal extension and provide insights into stabilization of PINK1 on the core TOM complex.
更多
查看译文
关键词
PINK1,Parkin,ubiquitin,mitochondria,Parkinson,TOM,kinase,phosphorylation,X-ray crystallography,mass spectrometry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要