Nanostructured systems increase the in vitro cytotoxic effect of bullfrog oil in human melanoma cells (A2058).

W N Oliveira,E N Alencar,H A O Rocha,L Amaral-Machado, E S T Egito

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie(2021)

引用 1|浏览5
暂无评分
摘要
The aim of this work was to investigate the in vitro cytotoxic effect of previously developed nanocapsules, nanoemulsion, and microemulsion based on bullfrog oil (BFO) against human melanoma cells (A2058). The nanosystems were produced as described in previous studies and characterized according to droplet/particle distribution and zeta potential. The biocompatibility was evaluated by the determination of the hemolytic potential against human erythrocytes. The cytotoxicity assessment was based on MTT and cell death assays, determination of Reactive Oxygen Species (ROS) levels, and cell uptake. The nanosystems were successfully reproduced and showed hemolytic potential smaller than 10% at all oil concentrations (50 and 100 µg.mL-1) (p < 0.05). The MTT assay revealed that the nanosystems decreased the mitochondrial activity up to 92 ± 2% (p < 0.05). The study showed that the free BFO induced cell apoptosis, while all the nanostructured systems caused cell death by necrosis associated with a ROS overproduction. This can be related to the increased ability of the nanostructured systems to deliver the BFO across all cellular compartments (membrane, cytoplasm, and nucleus). Finally, these results elucidate the in vitro BFO nanosystems cytotoxic effect against human melanoma cells (A2058), revealing the emulsified ones as the most cytotoxic systems. Overall, the findings suggest that the safety and antineoplastic activity of these systems can be further investigated by in vivo studies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要