A Clustering Ensemble Method for Cell Type Detection by Multiobjective Particle Optimization

IEEE/ACM Transactions on Computational Biology and Bioinformatics(2023)

引用 1|浏览38
暂无评分
摘要
Single-cell RNA sequencing (scRNA-seq) is a new technology different from previous sequencing methods that measure the average expression level for each gene across a large population of cells. Thus, new computational methods are required to reveal cell types among cell populations. We present a clustering ensemble algorithm using optimized multiobjective particle (CEMP). It is featured with several mechanisms: 1) A multi-subspace projection method for mapping the original data to low-dimensional subspaces is applied in order to detect complex data structure at both gene level and sample level. 2) The basic partition module in different subspaces is utilized to generate clustering solutions. 3) A transforming representation between clusters and particles is used to bridge the gap between the discrete clustering ensemble optimization problem and the continuous multiobjective optimization algorithm. 4) We propose a clustering ensemble optimization. To guide the multiobjective ensemble optimization process, three cluster metrics are embedded into CEMP as objective functions in which the final clustering will be dynamically evaluated. Experiments on 9 real scRNA-seq datasets indicated that CEMP had superior performance over several other clustering algorithms in clustering accuracy and robustness. The case study conducted on mouse neuronal cells identified main cell types and cell subtypes successfully.
更多
查看译文
关键词
Clustering ensemble,RNA-seq,single-cell analysis,particle swarm optimization algorithm,multi-objective optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要