High Throughput Characterization of V(D)J Recombination Signal Sequences Redefines the Consensus Sequence

biorxiv(2021)

引用 0|浏览0
暂无评分
摘要
In the adaptive immune system, V(D)J recombination initiates the production of a diverse antigen receptor repertoire in developing B and T cells. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank antigen receptor gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence. Here, we developed a cell-based, massively parallel V(D)J recombination assay to evaluate RAG1/2 activity on thousands of RSSs. We focused our study on the RSS heptamer and adjoining spacer region, as this region undergoes extensive conformational changes during RAG-mediated DNA cleavage. While the consensus heptamer sequence (CACAGTG) was marginally preferred, RAG1/2 was highly active on a wide range of non-consensus sequences. RAG1/2 generally preferred select purine/pyrimidine motifs that may accommodate heptamer unwinding in the RAG1/2 active site. Our results suggest RAG1/2 specificity for RSS heptamers is primarily dictated by DNA structural features dependent on purine/pyrimidine pattern, and to a lesser extent, RAG:RSS base-specific interactions. Further investigation of RAG1/2 specificity using this new approach will help elucidate the genetic instructions guiding V(D)J recombination. ### Competing Interest Statement KKR and WH are inventors on a pending patent for the SARP-seq method.
更多
查看译文
关键词
high throughput characterization,consensus sequences
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要