Comparative Analysis of Tryptophan Dynamics in Spectrin and Its Constituent Domains: Insights from Fluorescence

JOURNAL OF PHYSICAL CHEMISTRY B(2022)

引用 1|浏览4
暂无评分
摘要
Spectrin is a cytoskeletal protein ubiquitous in metazoan cells that acts as a liaison between the plasma membrane and the cellular interior and imparts mechanical stability to the plasma membrane. Spectrin is known to be highly dynamic, with an appreciable degree of torsional and segmental mobility. In this context, we have earlier utilized the red edge excitation shift (REES) approach to report the retention of restricted solvation dynamics and local structure in the vicinity of spectrin tryptophans on urea denaturation and loss of spectrin secondary structure. As a natural progression of our earlier work, in this work, we carried out a biophysical dissection of tryptophan solvation and rotational dynamics in spectrin and its constituent domains, in order to trace the origin of local structure retention observed in denatured spectrin. Our results show that the ankyrin binding domain (and, to a lesser extent, the beta-tetramerization domain) is capable of retention of local structure, similar to that observed for intact spectrin. However, all alpha-chain domains studied exhibit negligible retention of local structure on urea denaturation. Such a stark chain-specific retention of local structure could originate from the fact that the beta-chain domains possess specialized functions, where conservation of local (structural) integrity may be a prerequisite for optimum cellular function. To the best of our knowledge, these observations represent one of the first systematic biophysical dissections of spectrin dynamics in terms of its constituent domains and add to emerging literature on comprehensive domain-based analysis of spectrin organization, dynamics, and function.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要