Absolute calibration of LHAASO WFCTA camera based on LED

F. Aharonian, Q. An, Axikegu,L.X. Bai, Y.X. Bai, Y.W. Bao,D. Bastieri,X.J. Bi,Y.J. Bi, H. Cai, J.T. Cai,Zhen Cao, Zhe Cao,J. Chang,J.F. Chang,B.M. Chen,E.S. Chen,J. Chen,Liang Chen, Long Chen,M.J. Chen,M.L. Chen,Q.H. Chen,S.H. Chen,S.Z. Chen,T.L. Chen,X.L. Chen,Y. Chen,N. Cheng,Y.D. Cheng, S.W. Cui, X.H. Cui, Y.D. Cui, B.Z. Dai,H.L. Dai, Z.G. Dai, Danzengluobu,D. della Volpe,B. D’Ettorre Piazzoli,X.J. Dong,K.K. Duan,J.H. Fan,Y.Z. Fan,Z.X. Fan,J. Fang, K. Fang, C.F. Feng,L. Feng,S.H. Feng,Y.L. Feng,Y.T. Fu, H.Y. Gan, B. Gao, C.D. Gao, L.Q. Gao, Q. Gao, W. Gao, M.M. Ge, L.S. Geng,G.H. Gong, Q.B. Gou, M.H. Gu,F.L. Guo, J.G. Guo,X.L. Guo,Y.Q. Guo,Y.Y. Guo, Y.A. Han,H.H. He,H.N. He,J.C. He, S.L. He,X.B. He,Y. He,M. Heller,Y.K. Hor,C. Hou,H.B. Hu,S. Hu,S.C. Hu,X.J. Hu,D.H. Huang,Q.L. Huang,W.H. Huang,X.T. Huang,X.Y. Huang,Z.C. Huang,F. Ji,X.L. Ji,H.Y. Jia,K. Jiang, Z.J. Jiang, C. Jin,T. Ke,D. Kuleshov, K. Levochkin, B.B. Li,Cong Li,Cheng Li, F. Li, H.B. Li,H.C. Li, H.Y. Li,J. Li,K. Li,W.L. Li,Xin Li,X.R. Li, Y. Li,Y.Z. Li, Zhe Li,Zhuo Li, E.W. Liang, Y.F. Liang,S.J. Lin,B. Liu,C. Liu,D. Liu, H. Liu,H.D. Liu,J. Liu,J.L. Liu,J.S. Liu,J.Y. Liu,M.Y. Liu,R.Y. Liu,S.M. Liu,W. Liu,Y. Liu,Y.N. Liu, Z.X. Liu, W.J. Long,R. Lu,H.K. Lv, B.Q. Ma,L.L. Ma, X.H. Ma, J.R. Mao,A. Masood, Z. Min,W. Mitthumsiri,T. Montaruli, Y.C. Nan, B.Y. Pang, P. Pattarakijwanich,Z.Y. Pei, M.Y. Qi, Y.Q. Qi, B.Q. Qiao, J.J. Qin,D. Ruffolo, V. Rulev,A. Sáiz,L. Shao, O. Shchegolev, X.D. Sheng, J.Y. Shi, H.C. Song,Yu.V. Stenkin, V. Stepanov,Y. Su, Q.N. Sun, X.N. Sun,Z.B. Sun,P.H.T. Tam, Z.B. Tang,W.W. Tian,B.D. Wang,C. Wang,H. Wang,H.G. Wang,J.C. Wang,J.S. Wang,L.P. Wang,L.Y. Wang, R.N. Wang,W. Wang,X.G. Wang,X.J. Wang,X.Y. Wang,Y. Wang,Y.D. Wang,Y.J. Wang,Y.P. Wang,Z.H. Wang,Z.X. Wang, Zhen Wang,Zheng Wang,D.M. Wei,J.J. Wei,Y.J. Wei,T. Wen,C.Y. Wu, H.R. Wu, S. Wu,W.X. Wu,X.F. Wu, S.Q. Xi,J. Xia,J.J. Xia, G.M. Xiang, D.X. Xiao, G. Xiao,H.B. Xiao, G.G. Xin,Y.L. Xin,Y. Xing,D.L. Xu, R.X. Xu, L. Xue,D.H. Yan,J.Z. Yan, C.W. Yang, F.F. Yang,J.Y. Yang,L.L. Yang,M.J. Yang,R.Z. Yang, S.B. Yang, Y.H. Yao, Z.G. Yao, Y.M. Ye, L.Q. Yin,N. Yin, X.H. You,Z.Y. You,Y.H. Yu,Q. Yuan, H.D. Zeng, T.X. Zeng,W. Zeng, Z.K. Zeng,M. Zha, X.X. Zhai, B.B. Zhang, H.M. Zhang,H.Y. Zhang,J.L. Zhang, J.W. Zhang, Lu Zhang,Li Zhang,L.X. Zhang, P.F. Zhang,P.P. Zhang,R. Zhang, S.R. Zhang,S.S. Zhang,X. Zhang,X.P. Zhang,Y.F. Zhang,Y.L. Zhang,Yong Zhang,Yi Zhang,B. Zhao, J. Zhao, L. Zhao, L.Z. Zhao,S.P. Zhao,F. Zheng, Y. Zheng,B. Zhou,H. Zhou, J.N. Zhou,P. Zhou,R. Zhou, X.X. Zhou, C.G. Zhu, F.R. Zhu,H. Zhu, K.J. Zhu,X. Zuo

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment(2022)

引用 8|浏览45
暂无评分
摘要
The main scientific goal of the LHAASO WFCTA experiment is to measure the cosmic ray energy spectra and composition from 10 TeV to 1 EeV. Cherenkov photons in the extensive air shower measured by the SiPM camera of Cherenkov telescopes can be used to reconstruct the cosmic ray energy. The absolute calibration of the camera is a crucial step to achieve the accurate measurement of the cosmic ray energy spectrum. A multi-wavelength cylindrical illuminator based on LEDs is developed and mounted inside the telescope to calibrate and monitor the camera, and the illuminator’s stability is better than 0.5% under the temperature variation from -26 to 26 °C. A portable probe with a single photoelectron resolution of 21.6% is developed. After calibration by National Institute of Metrology, China (NIM), the probe is taken to the LHAASO site to measure the absolute photon density of the cylindrical illuminator inside the telescope. Based on the illuminator with known photon density, the photon conversion factor of the camera can be calibrated, and the overall calibration uncertainty is less than 2.6%.
更多
查看译文
关键词
LHAASO-WFCTA,SiPM camera,Cylindrical illuminator,Calibration,Relative photon distribution,Photons to electronic signal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要