Comparison of Long-term Human Precision-cut Lung Slice Culture Methodology and Response to Challenge: An Argument for Standardisation

ATLA-ALTERNATIVES TO LABORATORY ANIMALS(2021)

引用 7|浏览4
暂无评分
摘要
As non-animal alternatives gain acceptance, a need for harmonised testing strategies has emerged. Arguably the most physiologically-relevant model for assessing potential respiratory toxicants, that based on human precision-cut lung slices (hPCLS) has been utilised in many laboratories, but a variety of culture methodologies are employed. In this pilot study, combinations of three different hPCLS culture methods (dynamic organ roller culture (DOC), air-liquid interface (ALI) and submersion) and various media (based on E-199, DMEM/F12 and RPMI-1640) were compared. The hPCLS were assessed in terms of their viability and responsiveness to challenge. The endpoints selected to compare the medium-method (M-M) combinations, which included histological features and viability, were evaluated at day 14 (D14) and day 28 (D28); protein and adenylate kinase (AK) content, and cytokine response to immunostimulants (lipopolysaccharide (LPS) at 5 mu g/ml; polyinosinic:polycytidylic acid (Poly I:C) at 15 mu g/ml) were evaluated at D28 only. Based on the set of endpoints assessed at D28, it was clear that certain culture conditions significantly affected the hPCLS, with the tissue retaining more of its native features and functionality (in terms of cytokine response) in some of the M-M combinations tested more than others. This pilot study indicates that the use of appropriate M-M combinations can help maintain the health and functional responses of hPCLS, and highlights the need for the standardisation of culture conditions in order to facilitate effective inter-laboratory comparisons and encourage greater acceptance by the regulatory community.
更多
查看译文
关键词
animal replacement, human hPCLS, inhalation toxicology, lung disease, respiratory research, tissue culture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要