Extended range and aberration-free autofocusing via remote focusing and sequence-dependent learning

OPTICS EXPRESS(2021)

引用 1|浏览3
暂无评分
摘要
Rapid autofocusing over long distances is critical for tracking 3D topological variations and sample motion in real time. Taking advantage of a deformable mirror and Shack-Hartmann wavefront sensor, remote focusing can permit fast axial scanning with simultaneous correction of system-induced aberrations. Here, we report an autofocusing technique that combines remote focusing with sequence-dependent learning via a bidirectional long short term memory network. A 120 mu m autofocusing range was achieved in a compact reflectance confocal microscope both in air and in refractive-index-mismatched media, with similar performance under arbitrary-thickness liquid layers up to 1 mm. The technique was validated on sample types not used for network training, as well as for tracking of continuous axial motion. These results demonstrate that the proposed technique is suitable for real-time aberration-free autofocusing over a large axial range, and provides unique advantages for biomedical, holographic and other related applications. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要