Investigated diagnostic value of synthetic relaxometry, three-dimensional pseudo-continuous arterial spin labelling and diffusion-weighted imaging in the grading of glioma

Magnetic Resonance Imaging(2022)

引用 6|浏览1
暂无评分
摘要
Background: To investigate the performance of synthetic relaxometry, three-dimensional pseudo-continuous arterial spin labelling (pCASL) and diffusion-weighted imaging (DWI) in differentiating high-grade gliomas (HGGs) from low-grade gliomas (LGGs) and to compare with the conventional MRI. Methods: Seventy-two patients with gliomas (including 27 LGGs and 45 HGGs) were studied using synthetic magnetic resonance imaging (sy-MRI), pCASL, and DWI with a 3.0 T MR scanner. T1 relaxometry (T1), T2 relaxometry (T2), as well as proton density (PD) from sy-MRI, cerebral blood flow (CBF) from pCASL, apparent diffusion coefficient (ADC) from DWI and enhancement quality (EQ), proportion enhancing (PE) from conventional contrast enhanced image based Visually-Accessible-Rembrandt-Images (VASARI) scoring system, were all analyzed by two radiologists. The Student's t-test, Mann-Whitney U test or Fisher's exact test was used to compare the parameters between LGGs and HGGs. The diagnostic performance of each parameter and their combination for glioma grading were analyzed. Results: Significant statistical differences in T1, PD, CBF, ADC, EQ and PE are observed between LGGs and HGGs (all P < 0.001). The ADC values have higher discrimination abilities compared with other univariable parameters, with the AUC of 0.905. AUC values for conventional contrast-enhanced method, EQ and PE from VASARI, and conventional contrast-free method, CBF + ADC, are 0.873 and 0.912 respectively. The combined T1, PD, CBF and ADC model had the best performance for differentiating LGGs and HGGs with AUC, sensitivity and specificity of 0.993, 95.5%, 100%, respectively. Conclusions: Relaxometry parameters derived from synthetic MRI contributed to the discrimination of low-grade gliomas from high-grade gliomas. Proposed contrast-free approach combining T1, PD, CBF and ADC showed a strong discriminative power, and outperformed conventional approaches.
更多
查看译文
关键词
Glioma,Grading,Magnetic resonance imaging,Synthetic relaxometry,Three-dimensional pseudo-continuous arterial spin labelling,Diffusion-weighted imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要