Directed exfoliating and ordered stacking of transition-metal-dichalcogenides

NANOSCALE(2022)

引用 1|浏览18
暂无评分
摘要
Two-dimensional van der Waals crystals provide a limitless scope for designing novel combinations of physical properties by controlling the stacking order or twist angle of individual layers. Lattice orientation between stacked monolayers is significant not only for breaking the engineering symmetry but also for the study of many-body quantum phases and band topology. Thus far the state-of-the-art exfoliation approaches focus on the achievements of quality, size, yield, and scalability, while lacking sufficient information on lattice orientation. Consequently, interlayer alignment is usually determined by later experiments, such as the second harmonic generation spectroscopy, which increase the number of trials and errors for a designed artificial ordering and hampered the efficiency of systematic study. Herein, we report a lattice orientation distinguishable exfoliation method via gold favor epitaxy along the specific atomic step edges, meanwhile, fulfilling the requirements of high-quality, large-size, and high-yield monolayers. Hexagonal- and rhombohedral-stacking configurations of bilayer transition metal dichalcogenides are built directly at once as a result of foreseeing the lattice orientation. Optical spectroscopy, electron diffraction, and angle-resolved photoemission spectroscopy are used to study crystal quality, symmetric breaking, and band tuning, which support the exfoliating mechanism we proposed. This strategy shows the ability to facilitate the development of ordering stacking especially for multilayers assembling in the future.
更多
查看译文
关键词
stacking,transition-metal-dichalcogenides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要