Soft-Linking Of Improved Spatiotemporal Capacity Expansion Model With A Power Flow Analysis For Increased Integration Of Renewable Energy Sources Into Interconnected Archipelago

APPLIED ENERGY(2022)

引用 14|浏览2
暂无评分
摘要
This present study offers a novel approach for the improvement of energy planning. This has become increasingly important as higher penetration of variable energy resources and increased interconnection between the different energy sectors require more detailed planning in terms of spatiotemporal modeling in comparison to the presently available approaches. In this study, we present a method that soft-linked the energy planning and power flow models, which enabled fast and reliable solving of optimization problems. A linear continuous optimization model was used for the energy system optimization and the non-linear problem for the power system analysis. The method is used to compare different energy planning scenarios; further, this also offers the possibility for implementation assessment of the proposed scenarios. The method was applied to interconnected islands for five different scenarios. It was determined that the detailed spatial approach resulted in 26.7% higher total system costs, 3.3 times lower battery capacity, and 14.9 MW higher renewable energy generation capacities installed than in the coarser spatial representation. Moreover, the results of the power flow model indicated that the highest voltage deviation was 16% higher than the nominal voltage level. This indicates the need for inclusion of implementation possibility assessments of energy planning scenarios.
更多
查看译文
关键词
Energy planning, Soft-linking, Calliope modeling framework, Power flow, Renewable energy sources, Energy system analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要