Impacts Of Variations In Caspian Sea Surface Area On Catchment-Scale And Large-Scale Climate

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES(2021)

引用 13|浏览28
暂无评分
摘要
The Caspian Sea (CS) is the largest inland lake in the world. Large variations in sea level and surface area occurred in the past and are projected for the future. The potential impacts on regional and large-scale hydroclimate are not well understood. Here, we examine the impact of CS area on climate within its catchment and across the northern hemisphere, for the first time with a fully coupled climate model. The Community Earth System Model (CESM1.2.2) is used to simulate the climate of four scenarios: (a) larger than present CS area, (b) current area, (c) smaller than present area, and (d) no-CS scenario. The results reveal large changes in the regional atmospheric water budget. Evaporation (e) over the sea increases with increasing area, while precipitation (P) increases over the south-west CS with increasing area. P-E over the CS catchment decreases as CS surface area increases, indicating a dominant negative lake-evaporation feedback. A larger CS reduces summer surface air temperatures and increases winter temperatures. The impacts extend eastwards, where summer precipitation is enhanced over central Asia and the north-western Pacific experiences warming with reduced winter sea ice. Our results also indicate weakening of the 500-hPa troughs over the northern Pacific with larger CS area. We find a thermal response triggers a southward shift of the upper troposphere jet stream during summer. Our findings establish that changing CS area results in climate impacts of such scope that CS area variations should be incorporated into climate model simulations, including palaeo and future scenarios.
更多
查看译文
关键词
Caspian Sea, CESM1, 2, 2 model, evaporation, precipitation, subtropical jet
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要