Highly Efficient Remediation Of Chloridazon And Its Metabolites: The Case Of Graphene Oxide Nanoplatelets

ACS ES&T WATER(2021)

引用 4|浏览6
暂无评分
摘要
The contamination of aqueous environments by aromatic pollutants has become a global issue. Chloridazon, a herbicide considered as harmless to the ecosystem, has been widely used in recent decades and has accumulated, together with its degradation products desphenyl-chloridazon and methyl-desphenylchloridazon, to a non-negligible level in surface water and groundwater. To respond to the consequent necessity for remediation, in this work, we study the adsorption of chloridazon and its metabolites by graphene oxide and elucidate the underlying mechanism by X-ray photoelectron spectroscopy. We find a high adsorption capacity of 67 g kg(-1) for chloridazon and establish that bonding of chloridazon to graphene oxide is mainly due to hydrophobic interaction and hydrogen bonding. These findings demonstrate the potential of graphene-based materials for the remediation of chloridazon and its metabolites from aqueous environments.
更多
查看译文
关键词
graphene oxide, chloridazon and its metabolites, environmental remediation, adsorption mechanism, X-ray photoelectron spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要