Defect Guided Conduction In Graphene-Derivatives And Mos2: Two-Dimensional Nanomaterial Models

APPLIED MATERIALS TODAY(2021)

引用 10|浏览3
暂无评分
摘要
The realization of unique scientific phenomena in two-dimensional nanomaterials (2DNMs) has led to their applications in several electronic fields; making it imperative to understand the conduction mechanism of charge carriers in such systems. Though several studies have been conducted on 2DNMs with pristine crystallinity, the inevitable presence of defects in the crystals requires careful consideration of their effect on 2DNMs' electrical behavior. Here, we outline the effects of chemical, structural, substrate-induced defects and disorder on the conduction mechanism within 2DNMs, particularly graphene derivatives and MoS2. The conduction mechanisms discussed in this work are thermally activated conduction, nearest neighbor hopping, Efros-Shklovskii variable range hopping, and Mott variable range hopping. This review will be beneficial to the various material scientists studying the electronic properties of two-dimensional nanomaterials. (C) 2021 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Defects, Conduction mechanism, 2D materials, Localization, Hopping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要