Thermally induced flexible wood based on phase change materials for thermal energy storage and management

JOURNAL OF MATERIALS SCIENCE(2021)

引用 15|浏览13
暂无评分
摘要
The applications of composite phase change materials were limited due to their poor energy utilization efficiency, low thermal conductivity and strong rigidity. In this work, thermally induced flexible wood based on phase change material was fabricated by impregnating delignified wood (DW) with graphene and a novel kind of hyperbranched polyurethane. The wood composite showed excellent softness and flexibility during the heating process of hyperbranched polyurethane. It also displayed suitable phase change temperature (28.1 °C and 36.3 °C) and acceptable latent heat (64.29 J/g and 70.26 J/g) for daily applications. Thermal conductivity of the composite reached 0.417 (W*m −1 K −1 ) after adding graphene, which was enhanced approximately by 414% compared with pure wood. The light harvest efficiency of the composite was also improved after the addition of graphene. Therefore, the thermally induced flexible wood based on phase change material has great potential for building energy conservation and wearable energy storage devices due to its excellent flexibility, high thermal energy storage capacity and outstanding temperature regulating performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要