Melting Of Magnesium Oxide Up To Two Terapascals Using Double-Shock Compression

PHYSICAL REVIEW B(2021)

引用 11|浏览19
暂无评分
摘要
Constraining the melting behavior of magnesium oxide, a major constituent of gaseous and rocky planets, is key to benchmarking their evolutionary models. Using a double-shock technique, we extended the MgO melt curve measurements to 2 TPa; this is twice the pressure achieved by previous melting experiments on any material. A temperature plateau is observed between 1218 and 1950 GPa in the second-shock states, which is attributed to latent heat of melting. At 1950 GPa, the measured melting temperature is 17 600 K, which is 17% lower than recent theoretical predictions. The melting curve is steeper than that of MgSiO3, indicating that MgO is likely solid in the interior of Saturn-sized gas giants and extra-solar super-Earth planets.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要