Role Of Hydrogen Bonding In Wheat Gluten Protein Systems Plasticized With Glycerol And Water

POLYMER(2021)

引用 14|浏览5
暂无评分
摘要
Many biopolymers are stiff and brittle and require plasticizers. To optimize the choice and amount of plasticizer, the mechanisms behind plasticization need to be understood. For polar biopolymers, such as polysaccharides and proteins, plasticization depends to a large extent on the hydrogen bond network. In this study, glycerolplasticized protein systems based on wheat gluten were investigated, in combination with the effects of water. The methodology was based on a combination of mechanical tests and molecular dynamics simulations (MD). The simulations accurately predicted the glycerol content where the experimental depression in glass transition temperature (Tg) occurred (between 20 and 30 wt% plasticizer). They also predicted the strong water-induced depression in Tg. Detailed analysis revealed that in the dry system, the main effect of glycerol was to break protein-protein hydrogen bonds. In the moist system, glycerol was partly outcompeted by water in forming hydrogen bonds with the protein, making the glycerol plasticizer less effective than in dry conditions. These results show that MD can successfully predict the plasticizer concentration at which the onset of efficient plasticization occurs. MD can therefore be an important tool for understanding plasticizer mechanisms, even in a complex system, on a level of detail that is impossible with experiments.
更多
查看译文
关键词
Plasticization, Protein, Simulations, Gluten, Glycerol, Water, Hydrogen bonds
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要