Extracellular Vesicle-Based Therapy For Amyotrophic Lateral Sclerosis

BRAIN CIRCULATION(2021)

引用 7|浏览4
暂无评分
摘要
Amyotrophic lateral sclerosis (ALS) stands as a neurodegenerative disorder characterized by the rapid progression of motor neuron loss in the brain and spinal cord. Unfortunately, treatment options for ALS are limited, and therefore, novel therapies that prevent further motor neuron degeneration are of dire need. In ALS, the infiltration of pathological elements from the blood to the central nervous system (CNS) compartment that spur motor neuron damage may be prevented via restoration of the impaired blood-CNS-barrier. Transplantation of human bone marrow endothelial progenitor cells (hBM-EPCs) demonstrated therapeutic promise in a mouse model of ALS due to their capacity to mitigate the altered blood-CNS-barrier by restoring endothelial cell (EC) integrity. Remarkably, the hBM-EPCs can release angiogenic factors that endogenously ameliorate impaired ECs. In addition, these cells may produce extracellular vesicles (EVs) that carry a wide range of vesicular factors, which aid in alleviating EC damage. In an in vitro study, hBM-EPC-derived EVs were effectively uptaken by the mouse brain endothelial cells (mBECs) and cell damage was significantly attenuated. Interestingly, the incorporation of EVs into mBECs was inhibited via beta 1 integrin hindrance. This review explores preclinical studies of the therapeutic potential of hBM-EPCs, specifically via hBM-EPC-derived EVs, for the repair of the damaged blood-CNS-barrier in ALS as a novel treatment approach.
更多
查看译文
关键词
Neurodegenerative disorder, ALS, blood-CNS-barrier, stem cell, extracellular vesicle, transplantation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要