Spatially resolved GHz magnetization dynamics of a magnetite nano-particle chain inside a magnetotactic bacterium

PHYSICAL REVIEW RESEARCH(2021)

引用 5|浏览9
暂无评分
摘要
Understanding magnonic properties of nonperiodic magnetic nanostructures requires real-space imaging of ferromagnetic resonance modes with spatial resolution well below the optical diffraction limit and sampling rates in the 5-100 GHz range. Here, we demonstrate element-specific scanning transmission x-ray microscopydetected ferromagnetic resonance (STXM-FMR) applied to a chain of dipolarly coupled Fe3O4 nano-particles (40-50 nm particle size) inside a single cell of a magnetotactic bacterium Magnetospirillum magnetotacticum. The ferromagnetic resonance mode of the nano-particle chain driven at 6.748 GHz and probed with 50 nm x-ray focus size was found to have a uniform phase response but non-uniform amplitude response along the chain segments due to the superposition of dipolar coupled modes of chain segments and individual particles, in agreement with micromagnetic simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要