Spread Spectrum Time Domain Reflectometry And Steepest Descent Inversion To Measure Complex Impedance

APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL(2021)

引用 2|浏览1
暂无评分
摘要
In this paper, we present a method for estimating complex impedances using reflectometry and a modified steepest descent inversion algorithm. We simulate spread spectrum time domain reflectometry (SSTDR), which can measure complex impedances on energized systems for an experimental setup with resistive and capacitive loads. A parametric function, which includes both a misfit function and stabilizer function, is created. The misfit function is a least squares estimate of how close the model data matches observed data. The stabilizer function prevents the steepest descent algorithm from becoming unstable and diverging. Steepest descent iteratively identifies the model parameters that minimize the parametric function. We validate the algorithm by correctly identifying the model parameters (capacitance and resistance) associated with simulated SSTDR data, with added 3 dB white Gaussian noise. With the stabilizer function, the steepest descent algorithm estimates of the model parameters are bounded within a specified range. The errors for capacitance (220pF to 820pF) and resistance (50 Omega to 270 Omega) are < 10%, corresponding to a complex impedance magnitude vertical bar R + 1/j omega C vertical bar of 53 Omega to 510 Omega.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要