Atomic-Scale Investigation Of Oxidation At The Black Phosphorus Surface

ACS APPLIED ELECTRONIC MATERIALS(2021)

引用 8|浏览0
暂无评分
摘要
Black phosphorus (BP) exhibits extraordinary electronic properties that are desirable for a wide variety of electronic and optoelectronic applications. However, applications of BP are hindered by its rapid degradation in ambient conditions. Despite significant advances that have been made in understanding the degradation mechanism, no consensus has yet been reached on how BP oxidation occurs at the atomic scale as experimental studies have been mostly restricted to averaged effects of degradation over a micron- to millimeter-sized region. Here, BP oxidation is investigated using scanning tunneling microscopy/spectroscopy (STM/S). Introducing O-2 gas to the BP surface in ultrahigh vacuum at a pressure of 10(-5) mbar for 1 min creates two new types of defects on the surface. We identify these defects as dangling atomic oxygen and phosphorus multivacancies using density functional theory simulations. In addition to the structural changes to the surface, the electronic structure is also drastically altered by the introduction of oxygen. The 300 meV band gap of BP is lifted due to dosing. This change in the electronic structure is reversible through STM tip manipulation. These are the first experimental results showing the atomic-scale oxidation of BP, an important step toward understanding the degradation process.
更多
查看译文
关键词
black phosphorus, STM, 2D materials, defects, oxidation, degradation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要