Reprogramming Cancer Stem-Like Cells With Nanoforskolin Enhances The Efficacy Of Paclitaxel In Targeting Breast Cancer

ACS APPLIED BIO MATERIALS(2021)

引用 13|浏览1
暂无评分
摘要
Cancer stem-like cells (CSCs) have emerged as an important target for breast cancer therapy owing to their self-renewability, proliferation, and elevated chemoresistance properties. Here, we present a strategy of eliminating CSCs by differentiation therapy where "forced differentiation" reprograms CSCs so that they lose their intrinsic properties and become susceptible for conventional chemotherapeutic drugs. In this study, we report that a conventional chemotherapeutic paclitaxel enhances the stemness of CSCs, while a phytochemical forskolin being essentially nontoxic to CSCs possesses the intrinsic ability to reprogram them. To achieve simultaneous targeting of CSCs and bulk tumor cells, we used a co-delivery system where liquid crystal nanoparticles (LCN) were co-encapsulated with both paclitaxel and forskolin. LCN showed higher uptake, retention, and penetration potential in CSCs overcoming their high drug efflux property. Moreover, LCN improved the pharmacokinetic parameters of forskolin, which otherwise had very low retention and bioavailability. Forskolin-loaded LCN forced CSCs to exit from their mesenchymal state, which reduced their stemness and chemosensitized them while inhibiting E-cadherin-mediated survival and tumor-initiating potential as well as reversing paclitaxel-induced stemness. We further showed that upon administration of paclitaxel and forskolin co-loaded LCN to an orthotropic xenograft mouse model, the nanomedicine showed enhanced passive tumor targeting capability with very potent antitumor activity that eradicated small solid tumor in a single dose and showed no sign of tumor relapse or systemic toxicity over a long period. Overall, these findings give a proof of concept that co-delivery of forskolin and paclitaxel in a single nanoformulation can achieve overall tumor targeting where forskolin can efficiently reprogram/differentiate CSCs and paclitaxel can induce cytotoxicity in both differentiated CSCs and bulk tumor cells simultaneously. Hence, this study can provide a nanoformulation that can offer an efficient strategy for cancer therapy.
更多
查看译文
关键词
breast cancer, cancer stem cells, liquid crystal nanoparticles, forskolin, chemotherapy, passive targeting, nanomedicine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要