Ultra-thin 2D transition metal monochalcogenide crystals by planarized reactions

NPJ 2D MATERIALS AND APPLICATIONS(2021)

引用 4|浏览4
暂无评分
摘要
We here present a planarized solid-state chemical reaction that can produce transition metal monochalcogenide (TMMC) 2D crystals with large lateral extent and finely controllable thickness down to individual layers. The enhanced lateral diffusion of a gaseous reactant at the interface between a solid precursor and graphene was found to provide a universal route towards layered TMMCs of different compositions. A unique layer-by-layer growth mechanism yields atomically abrupt crystal interfaces and kinetically controllable thickness down to a single TMMC layer. Our approach stabilizes 2D crystals with commonly unattainable thermodynamic phases, such as β-Cu 2 S and γ-CuSe, and spectroscopic characterization reveals ultra-large phase transition depression and interesting electronic properties. The presented ability to produce large-scale 2D crystals with high environmental stability was applied to highly sensitive and fast optoelectronic sensors. Our approach extends the morphological, compositional, and thermodynamic complexity of 2D materials.
更多
查看译文
关键词
Synthesis and processing,Two-dimensional materials,Materials Science,general,Nanotechnology,Surfaces and Interfaces,Thin Films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要