Nanoporous Morphogenesis In Amorphous Carbon Layers: Experiments And Modeling On Energetic Ion Induced Self-Organization

ADVANCED THEORY AND SIMULATIONS(2021)

引用 1|浏览6
暂无评分
摘要
Nanoporous amorphous carbon constitutes a highly relevant material for a multitude of applications ranging from energy to environmental and biomedical systems. In the present work, it is demonstrated experimentally how energetic ions can be utilized to tailor porosity of thin sputter deposited amorphous carbon films. The physical mechanisms underlying self-organized nanoporous morphogenesis are unraveled by employing extensive molecular dynamics and phase field models across different length scales. It is demonstrated that pore formation is a defect induced phenomenon, in which vacancies cluster in a spinodal decomposition type of self-organization process, while interstitials are absorbed by the amorphous matrix, leading to additional volume increase and radiation induced viscous flow. The proposed modeling framework is capable to reproduce and predict the experimental observations from first principles and thus opens the venue for computer assisted design of nanoporous frameworks.
更多
查看译文
关键词
ion implantation, molecular dynamics, nanoporous carbon, phase field model, self-organized structure formation, sponge
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要