An Actuator Disc Analysis Of A Ducted High-Solidity Tidal Turbine In Yawed Flow

PROCEEDINGS OF THE ASME 38TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2019, VOL 10(2019)

引用 2|浏览0
暂无评分
摘要
This work elaborates a computational fluid dynamic model utilised in the investigation of the hydrodynamic performance concerning a ducted high-solidity tidal turbine in yawed inlet flows. Analysing the performance at distinct bearing angles with the axis of the turbine, increases in torque and mechanical rotational power were acknowledged to be induced within a limited angular range at distinct tip-speed ratio values. Through multiple yaw iterations, the peak attainment was found to fall between bearing angles of 15 and 30, resulting in a maximum power increase of 3.22%, together with an extension of power development to higher tip-speed ratios. In confirmation, these outcomes were subsequently analysed by means of actuator disc theory, attaining a distinguishable relationship with blade-integrated outcomes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要