Perovskite Solar Cells With All-Inkjet-Printed Absorber And Charge Transport Layers

ADVANCED MATERIALS TECHNOLOGIES(2021)

引用 72|浏览13
暂无评分
摘要
One of the key challenges of perovskite photovoltaics is the scalable fabrication of high-efficiency perovskite solar cells (PSCs). Not only the scalable deposition of high-quality perovskite thin-films itself, but also the adjacent charge extraction layers is pivotal. In this work, PSCs based on all-inkjet-printed absorber and extraction layers are presented, allowing for a scalable and material-efficient deposition. The inkjet-printed PSCs are of p-i-n-architecture with a precursor-based nickel oxide hole-transport layer, a high-quality inkjet-printed triple-cation (methylammonium, formamidinium, and cesium) perovskite absorber layer and a double layer electron-transport layer of phenyl-C61-butyric acid methyl ester and bathocuproine. The ink properties, inkjet parameters, and annealing procedure are optimized for each layer. PSCs with such inkjet-printed absorber and charge carrier extraction layers demonstrate an efficiency of >17% with low hysteresis. Although printed in ambient atmosphere, the devices show excellent short-term stability (40 h) even under elevated temperature (85 degrees C). These results are a promising next step on the way to fully inkjet-printed perovskite solar cells, including both electrodes as well.
更多
查看译文
关键词
charge transport layers, inkjet printing, perovskite solar cells, wetting behavior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要