Electrochemical Co2 Reduction: Tailoring Catalyst Layers In Gas Diffusion Electrodes

ADVANCED SUSTAINABLE SYSTEMS(2021)

引用 55|浏览0
暂无评分
摘要
The electrochemical conversion of CO2 into commodity chemicals or fuels is an attractive reaction for sustainable CO2 utilization. In this context, the application of gas diffusion electrodes is promising due to efficient CO2 mass transport. Herein, a scalable and reproducible method is presented for polytetrafluoroethylene (PTFE)-bound copper gas diffusion electrodes (GDEs) via the dry-pressing method and compositional parameters are emphasized to alter such electrodes. The assembly of the catalytic layer plays a critical role in the electrode performance, as elevated bulk hydrophobicity coupled with good surface wettability is observed to offer highest performance in 0.5 M KHCO3. With optimized electrodes, formate, CO, and H-2 are obtained at a current density of 25 mA cm(-2) as main products in 1 M KOH in faradaic efficiencies (FEs) of 27%, 30%, and 36%. At 200 mA cm(-2), an altered product composition with ethylene (33% FE) and ethanol (9% FE) along with H-2 (33% FE) is observed. In addition, n-propanol is observed with 7% faradaic efficiency. The results indicate that the composition of the GDE has a severe influence on the electrode performance and setting proper hydrophobicity gradients within the electrode is key toward developing a successful electrochemical CO2 reduction.
更多
查看译文
关键词
carbon dioxide, copper, electrocatalysis, ethylene, gas diffusion electrodes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要