Night-Time Ionospheric Localized Enhancements (Nile) Observed In North America Following Geomagnetic Disturbances

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS(2021)

引用 6|浏览4
暂无评分
摘要
The Ionospheric Data Assimilation Four-Dimensional (IDA4D) technique has been coupled to Sami3, which is another model of the ionosphere (SAMI3). In this application, ground-based and space-based GPS total electron content (TEC) data have been assimilated into SAMI3, while in-situ electron densities, autoscaled ionosonde NmF2, and reference GPS stations have been used for validation. IDA4D/SAMI3 shows that night-time ionospheric localized enhancements (NILE) are formed following geomagnetic storms in November 2003 and August 2018. The NILE phenomenon appears as a moderate, longitudinally extended enhancement of NmF2 at 30 degrees-40 degrees N MLAT, occurring in the late evening (20-24 LT) following much larger enhancements of the equatorial anomaly crests in the main phase of the storms. The NILE appears to be caused by upward and northward plasma transport around the dusk terminator, which is consistent with eastward polarization electric fields. Independent validation confirms the presence of the NILE, and indicates that IDA4D is effective in correcting random errors and systematic biases in SAMI3. In all cases, biases and root-mean-square errors are reduced by the data assimilation, typically by a factor of 2 or more. During the most severe part of the November 2003 storm, the uncorrected ionospheric error on a GPS 3D position at 1LSU (Louisiana) is estimated to exceed 34 m. The IDA4D/SAMI3 specification is effective in correcting this down to 10 m.
更多
查看译文
关键词
ionosphere, GPS, data assimilation, storms, modeling, validation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要