Wind Climate And Wind Power Resource Assessment Based On Gridded Scatterometer Data: A Thracian Sea Case Study

ENERGIES(2021)

引用 8|浏览1
暂无评分
摘要
The present analysis utilized the 6-hourly data of wind speed (zonal and meridional) for the period between 2011 and 2019, as retrieved from the Copernicus Marine Environmental Service (CMEMS), covering the Thracian Sea (the northern part of the Aegean Sea). Data were estimated from the global wind fields derived from the Advanced Scatterometer (ASCAT) L2b scatterometer on-board Meteorological Operational (METOP) satellites, and then processed towards the equivalent neutral-stability 10 m winds with a spatial resolution of 0.25 degrees x 0.25 degrees. The analysis involved: (a) descriptive statistics on wind speed and direction data; (b) frequency distributions of daily-mean wind speeds per wind direction sector; (c) total wind energy content assessment per wind speed increment and per sector; (d) total annual wind energy production (in MWh/yr); and (e) wind power density, probability density function, and Weibull wind speed distribution, together with the relevant dimensionless shape and scale parameters. Our results show that the Lemnos Plateau has the highest total wind energy content (4455 kWh/m(2)/yr). At the same time, the area to the SW of the Dardanelles exhibits the highest wind energy capacity factor (similar to 37.44%), producing 7546 MWh/yr. This indicates that this zone could harvest wind energy through wind turbines, having an efficiency in energy production of 37%. Lower capacity factors of 24-28% were computed at the nearshore Thracian Sea zone, producing between 3000 and 5600 MWh/yr.
更多
查看译文
关键词
marine renewable energy, wind climate, wind power assessment, wind energy capacity factor, scatterometer, Thracian Sea
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要