Kinetic Equilibrium Reconstruction And The Impact On Stability Analysis Of Kstar Plasmas

NUCLEAR FUSION(2021)

引用 8|浏览11
暂无评分
摘要
High fidelity kinetic plasma equilibrium reconstructions are an essential requirement for accurate stability and disruption prediction analyses to support continuous operation of high beta tokamak plasmas. The present kinetic equilibrium reconstructions of plasmas in the KSTAR device include plasma density and temperature profiles from Thomson scattering and ion temperature from charge exchange spectroscopy diagnostics, and allowance for fast particle pressure. In addition, up to 25 channels of motional Stark effect diagnostic data are used to constrain the magnetic field pitch angle profile in the plasma to produce a reliable computation of the safety factor, q, profile. H-mode plasmas exhibit clear pedestal characteristics in the reconstructed pressure profile compared to internal transport barrier or L-mode plasmas. The plasma configuration and vertical position of inner strike points are validated by CCD and infrared camera images. Ideal and resistive magnetohydrodynamic (MHD) stability analyses using the DCON and resistive DCON codes utilize these kinetic equilibrium reconstructions to compare to experimental plasma stability. Equilibria with sufficiently low convergence error can provide reliable computation of ideal and resistive MHD stability analysis.
更多
查看译文
关键词
MHD stability, KSTAR, kinetic equilibrium reconstruction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要