The role of hydrogen in the edge dislocation mobility and grain boundary-dislocation interaction in α-Fe

International Journal of Hydrogen Energy(2021)

引用 15|浏览0
暂无评分
摘要
The atomistic mechanisms of dislocation mobility depending on the presence of hydrogen were investigated for two edge dislocation systems that are active in the plasticity of α-Fe, specifically ½<111>{110} and ½<111>{112}. In particular, the glide of the dislocation pile-ups through a single crystal, as well as transmission of the pile-ups across the grain boundary were evaluated in bcc iron crystals that contain hydrogen concentrations in different amounts. Additionally, the uniaxial tensile response under a constant strain rate was analyzed for the aforementioned structures. The results reveal that the presence of hydrogen decreases the velocity of the dislocations – in contrast to the commonly invoked HELP (Hydrogen-enhanced localized plasticity) mechanism -, although some localization was observed near the grain boundary where dislocations were pinned by elastic stress fields. In the presence of pre-exisiting dislocations, hydrogen-induced hardening was observed as a consequence of the restriction of the dislocation mobility under uniaxial tension. Furthermore, it was observed that hydrogen accumulation in the grain boundary suppresses the formation of new grains that leads to a hardening response in the stress-strain behaviour which can initiate brittle fracture points.
更多
查看译文
关键词
Hydrogen embrittlement,Molecular dynamics,Dislocation,Fracture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要