Maximal Spreading Of Droplet During Collision On Particle: Effects Of Liquid Viscosity And Surface Curvature

PHYSICS OF FLUIDS(2021)

引用 19|浏览8
暂无评分
摘要
This study uses the level contour reconstruction method to numerically investigate the maximum spreading due to droplet collision with a dry, stationary, spherical particle. We consider a broad range of impact conditions: Weber number 30-90, Ohnesorge number 0.0013-0.7869, and droplet-to-particle size ratio 1/10-1/2, and quantitatively and systematically analyze 120 collision cases to understand how liquid viscosity and surface curvature affect the maximum spreading. The maximum spreading increases on the smaller particles for both the capillary and viscous regimes, but the underlying physics clearly differ. The increase in maximum spreading is governed mainly by the surface deformation of the rim for the capillary regime and viscous dissipation for the viscous regime. An empirical correlation that can be applied to the droplet impact on both a particle and a flat surface is also presented. The model shows good agreement with existing experimental data as well as our simulation results within a deviation range of +/- 15%. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要