Development Of A Yeast-Based Assay For Bioavailable Phosphorus

Heather A. M. Shepherd,Matt T. Trentman,Jennifer L. Tank,Jennifer Praner, Anissa Cervantes, Priya Chaudhary, Jonah Gezelter,Allyson J. Marrs, Kathryn A. Myers,Jonathan R. Welsh, Yueh-Fu O. Wu,Holly Goodson

ACS ES&T WATER(2021)

引用 2|浏览1
暂无评分
摘要
Preventing the eutrophication of inland freshwater ecosystems requires quantifying the phosphorus (P) content of the streams and rivers that feed them. Typical methods for measuring P assess soluble reactive P (SRP) or total P (TP) and require expensive analytical techniques that produce hazardous waste. Here, we present a novel, low-tech method for measuring the more relevant bioavailable P (BAP); this assay utilizes the growth of baker's yeast, avoids the production of hazardous waste, and reduces cost relative to SRP and TP measurements. The yeast BAP (yBAP) assay takes advantage of the observation that yeast density at saturating growth increases linearly with provided P. We show that this relationship can be used to measure P in freshwater in concentration ranges relevant to eutrophication. In addition, we measured yBAP in water containing known amounts of fertilizer and in samples from agricultural waterways. We observed that the majority of yBAP values were between those obtained from standard SRP and TP measurements, demonstrating that the assay is compatible with real-world settings. The costeffective and nonhazardous nature of the yeast-based assay suggests that it could have utility in a range of settings, offering added insight into identify water systems at risk of eutrophication from excess phosphorus.
更多
查看译文
关键词
eutrophication, whole-cell yeast-based biosensor, bioavailable phosphorus, Saccharomyces cerevisiae, assay
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要