A joint power and bandwidth allocation method based on deep reinforcement learning for V2V communications in 5G

China Communications(2021)

引用 18|浏览6
暂无评分
摘要
Vehicular communications have recently attracted great interest due to their potential to improve the intelligence of the transportation system. When maintaining the high reliability and low latency in the vehicle-to-vehicle (V2V) links as well as large capacity in the vehicle-to-infrastructure (V2I) links, it is essential to flexibility allocate the radio resource to satisfy the different requirements in the V2V communication. This paper proposes a new radio resources allocation system for V2V communications based on the proximal strategy optimization method. In this radio resources allocation framework, a vehicle or V2V link that is designed as an agent. And through interacting with the environment, it can learn the optimal policy based on the strategy gradient and make the decision to select the optimal sub-band and the transmitted power level. Because the proposed method can output continuous actions and multi-dimensional actions, it greatly reduces the implementation complexity of large-scale communication scenarios. The simulation results indicate that the allocation method proposed in this paper can meet the latency constraints and the requested capacity of V2V links under the premise of minimizing the interference to vehicle-to-infrastructure communications.
更多
查看译文
关键词
5G,V2V communication,power allocation,bandwidth allocation,deep reinforcement learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要