Dimensionality Determined Microwave Absorption Properties In Ferrite/ Bio-Carbon Composites

CERAMICS INTERNATIONAL(2021)

引用 17|浏览4
暂无评分
摘要
Composition and structural design play a very influential role in the microwave absorption (MA) manipulation of ferrite/carbon composites. Here, by carefully choosing the dimensionality of the bio-carbon materials, the interfacial geometries and MA properties of ferrite/bio-carbon composites have been controlled effectively. The one dimensional (1D), two dimensional (2D), and three dimensional (3D) biomass-based carbon materials decorated with ZnFe2O4 (ZFO) particles were obtained respectively from carbon fibers (1D), tree leaves (2D), wheat straw (2D), peanut shell (3D) and orange peel (3D) by a simple two-step synthesis method. With increasing the bio-carbon's dimensionality from 1D, 2D to 3D, the ferrite/carbon composite's MA properties are promoted and the minimum reflection loss is enhanced from -9 dB to -45 dB. By changing the ZFO/3D-bio-carbon samples' thickness, a broad absorption range from 4 to 18 GHz can be covered. Moreover, the effective absorption bandwidth for ZFO/3D-bio-carbon can be modified up to 7.1 GHz, which covers the whole Ku band. These observations identified the important roles of the ferrite/carbon interface and dimensionality of carbon materials and provided an effective and low-cost route to design microwave absorption materials based on biomass-industrial waste composites.
更多
查看译文
关键词
Ferrite, bio-carbon, Dimensionality, Microwave absorption, Reflection loss
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要