Co-Electrospinning Polycaprolactone/Gelatin Membrane As A Tunable Drug Delivery System For Bone Tissue Regeneration

MATERIALS & DESIGN(2021)

引用 38|浏览5
暂无评分
摘要
The rising popularity of co-electrospinning technique in the field of biomaterial has enabled the possibility of combining various polymers, in which they provide the mechanical properties and the bioactivity for each other. Herein, a series of polycaprolactone/gelatin (PCL/Gel) composite membranes were prepared by co-electrospinning, and their biocompatibility and drug-controlled release ability were evaluated in detail for the first time. The addition of Gel significantly enhanced the adhesion and differentiation of osteoblasts, while the addition of PCL significantly improved the mechanical properties. Moreover, the in vitro degradation and drug release results showed that by adjust the PCL fibers amount and size, the degradation of Gel and the release profile of hydrophilic drugs/proteins could be effectively controlled: in the low PCL groups (PCL/Gel-1 & PCL/Gel-4), the Gel nano-fibers dissolved rapidly, resulting in an early explosive release within 1 week; however, with the increase of PCL content, the drug release rate decreased gradually, and the total release period could be extended to over 2 weeks (PCL/Gel-2, PCL/ Gel-3 & PCL/Gel-5) or more (PCL/Gel-6). Therefore, the preparation of a controllable drug delivery system with good biological activity by co-electrospinning of PCL and Gel could provide an effective strategy for bone regeneration. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Co-electrospinning, PCL, Gel fibers, Controlled drug release, Osteogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要