Control Of Electron And Electron-Hole Pair Dynamics On Nonlinear Lattice Bilayers By Strong Solitons

CHAOS(2021)

引用 1|浏览4
暂无评分
摘要
We consider the dynamics of electrons and holes moving in two-dimensional lattice layers and bilayers. As an example, we study triangular lattices with units interacting via anharmonic Morse potentials and investigate the dynamics of excess electrons and electron-hole pairs according to the Schrodinger equation in the tight binding approximation. We show that when single-site lattice solitons or M-solitons are excited in one of the layers, those lattice deformations are capable of trapping excess electrons or electron-hole pairs, thus forming quasiparticle compounds moving approximately with the velocity of the solitons. We study the temporal and spatial nonlinear dynamical evolution of localized excitations on coupled triangular double layers. Furthermore, we find that the motion of electrons or electron-hole pairs on a bilayer is slaved by solitons. By case studies of the dynamics of charges bound to solitons, we demonstrate that the slaving effect may be exploited for controlling the motion of the electrons and holes in lattice layers, including also bosonic electron-hole-soliton compounds in lattice bilayers, which represent a novel form of quasiparticles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要