Sound Absorption Of Petal Shaped Micro-Channel Porous Materials

PHYSICS OF FLUIDS(2021)

引用 5|浏览4
暂无评分
摘要
Experiments demonstrated that surface roughness could significantly improve the sound absorption performance of porous materials. In this study, to quantitatively explore the underlying physical mechanisms, porous materials with roughened pore surfaces are modeled as a bundle of parallel petal shaped tubes, so that relevant acoustic transport parameters, namely, viscous permeability, thermal permeability, tortuosity, viscous characteristic length, and thermal characteristic length, can be theoretically predicted. Multi-scale numerical simulations are implemented to validate the theoretical predictions, with good agreement achieved. Compared with smooth tubes, petal shaped tubes reduce the viscous and thermal characteristic lengths as well as the viscous and thermal permeabilities, resulting in enhanced sound absorption over a wide frequency band.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要