Recycling And Rheology Of Poly(Lactic Acid) (Pla) To Make Foams Using Supercritical Fluid (Vol 33, 067119, 2021)

PHYSICS OF FLUIDS(2021)

引用 4|浏览5
暂无评分
摘要
Biodegradable plastics are thought to be the possible directions in managing plastic pollutions. Unfortunately, they are not recycled in most countries since they are designed to decompose even though recycling is a more pragmatic method than landfill or incineration. Thus, it is more constructive to develop methods to recycle biodegradable plastics or to develop biodegradable yet recyclable plastics. In this study, we used cutlery with a composite of poly(lactic acid) (PLA) and talc. The possibility to recycle it to make foams was studied even though it will have lowered mechanical strength from the recycling process as it is less significant for this product. Tensile properties of solid PLA and foams showed no significant decrease in the strength up to three processes of compression molding and foaming. We performed shear rheometry to determine the thermal stability and dependences of the complex viscosity on frequency and temperature. The magnitude of the complex viscosity dramatically increased with decreasing frequency and such an upturn increased with temperature, but time-temperature superposition was valid at high temperatures. The extensional rheometry showed no strain hardening, but physical foaming using supercritical carbon dioxide (CO2) could still occur, and the operating conditions to obtain various foamed structures were determined. We also compared the effects of one-directional against three-dimensional expansion. Overall, the concentration of CO2 in PLA and crystallinity of the foams are the two key variables to describe the bulkiness of foams. Surprisingly, the lower the CO2 concentration, the bulkier the foams at any sorption temperature and pressure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要